Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise.
نویسندگان
چکیده
We examined the hypothesis that O2 uptake (VO2) would change more rapidly at the onset of step work rate transitions in exercise with hyperoxic gas breathing and after prior high-intensity exercise. The kinetics of VO2 were determined from the mean response time (MRT; time to 63% of total change in VO2) and calculations of O2 deficit and slow component during normoxic and hyperoxic gas breathing in one group of seven subjects during exercise below and above ventilatory threshold (VT) and in another group of seven subjects during exercise above VT with and without prior high-intensity exercise. In exercise transitions below VT, hyperoxic gas breathing did not affect the kinetic response of VO2 at the onset or end of exercise. At work rates above VT, hyperoxic gas breathing accelerated both the on- and off-transient MRT, reduced the O2 deficit, and decreased the VO2 slow component from minute 3 to minute 6 of exercise, compared with normoxia. Prior exercise above VT accelerated the on-transient MRT and reduced the VO2 slow component from minute 3 to minute 6 of exercise in a second bout of exercise with both normoxic and hyperoxic gas breathing. However, the summated O2 deficit in the second normoxic and hyperoxic steps was not different from that of the first steps in the same gas condition. Faster on-transient responses in exercise above, but not below, VT with hyperoxia and, to a lesser degree, after prior high-intensity exercise above VT support the theory of an O2 transport limitation at the onset of exercise for workloads >VT.
منابع مشابه
Facial cooling-induced bradycardia does not slow pulmonary V.O2 kinetics at the onset of high-intensity exercise.
The mechanism(s) underlying the attenuation of the slow component of pulmonary O2 uptake (Vo2) by prior heavy-intensity exercise is (are) poorly understood but may be ascribed to either an intramuscular-metabolic or a circulatory modification resulting from "priming" exercise. We investigated the effects of altering the circulatory dynamics by delayed vagal withdrawal to the circulation induced...
متن کاملEffects of prior heavy-intensity exercise during single-leg knee extension on VO2 kinetics and limb blood flow.
The effects of prior heavy-intensity exercise on O(2) uptake (Vo(2)) kinetics of a second heavy exercise may be due to vasodilation (associated with metabolic acidosis) and improved muscle blood flow. This study examined the effect of prior heavy-intensity exercise on femoral artery blood flow (Qleg) and its relationship with Vo(2) kinetics. Five young subjects completed five to eight repeats o...
متن کاملThe Positive Effects of Priming Exercise on Oxygen Uptake Kinetics and High-Intensity Exercise Performance Are Not Magnified by a Fast-Start Pacing Strategy in Trained Cyclists
The purpose of this study was to determine both the independent and additive effects of prior heavy-intensity exercise and pacing strategies on the VO2 kinetics and performance during high-intensity exercise. Fourteen endurance cyclists (VO2max = 62.8 ± 8.5 mL.kg-1.min-1) volunteered to participate in the present study with the following protocols: 1) incremental test to determine lactate thre...
متن کاملInfluence of Prior Exercise on VO2 Kinetics Subsequent Exhaustive Rowing Performance
Prior exercise has the potential to enhance subsequent performance by accelerating the oxygen uptake (VO2) kinetics. The present study investigated the effects of two different intensities of prior exercise on pulmonary VO2 kinetics and exercise time during subsequent exhaustive rowing exercise. It was hypothesized that in prior heavy, but not prior moderate exercise condition, overall VO2 kine...
متن کاملKinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
It has been suggested that, during heavy-intensity exercise, O(2) delivery may limit oxygen uptake (.VO2) kinetics; however, there are limited data regarding the relationship of blood flow and .VO2 kinetics for heavy-intensity exercise. The purpose was to determine the exercise on-transient time course of femoral artery blood flow (Q(leg)) in relation to .VO2 during heavy-intensity, single-leg,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 1997